Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tri- μ -ethanethiolato-bis{[η^5 -1,2,3,4-tetramethyl-5-(trimethylsilyl)cyclopentadienyl]iron(II,III)}(Fe^{''}-Fe^{'''})

Jing Li

Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China Correspondence e-mail: ljcyhui@tust.edu.cn

Received 11 October 2009; accepted 31 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.095; data-to-parameter ratio = 19.6.

The title complex, $[Fe_2(C_2H_5S)_3(C_{12}H_{21}Si)_2]$, has an unusual Fe_2S_3 core. The two 1,2,3,4-tetramethyl-5-(trimethylsilyl)cyclopentadienyl (Cp') ligands coordinate to the Fe atoms with their C_5 planes perpendicular [dihedral angles = 88.23 (7) and 88.55 (7)°] to the Fe—Fe vector, building two Cp'Fe subunits. These two subunits are bridged by three thiolate ligands. There are no significant differences in the coordination geometries between the two Fe atoms. The short Fe—Fe distance of 2.7842 (5) Å is clear evidence of an intermetallic bond. Such a diiron–sulfur structure might act as a model of active sites in some metalloproteins.

Related literature

For related diiron clusters, $[CpFe(\mu-SR)_3FeCp^*]$ (Cp = η^5 -C₅Me₅, R = Me, Et and Ph) and $[CpFe(\mu-SMe)_3FeCp]$, see: Chen *et al.* (2008*a,b*); Madec *et al.* (1999).

Experimental

Crystal data

 $[Fe_2(C_2H_5S)_3(C_{12}H_{21}Si)_2]$ $M_r = 681.82$ Orthorhombic, *Pbca* a = 17.7426 (19) Å b = 19.874 (2) Å c = 20.493 (2) Å

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.593, T_{\rm max} = 0.808$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	334 parameters
$wR(F^2) = 0.095$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
5541 reflections	$\Delta \rho_{\min} = -0.25 \text{ e} \text{ Å}^{-3}$

 $V = 7226.2 (13) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.55 \times 0.43 \times 0.21 \text{ mm}$

43018 measured reflections

6541 independent reflections

4961 reflections with $I > 2\sigma(I)$

 $\mu = 1.06 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.055$

Z = 8

Table 1 Selected bond lengths (Å).

Fe1-C13	2.104 (2)	Fe2-C2	2.113 (2)
Fe1-C14	2.111 (2)	Fe2-C3	2.125 (2)
Fe1-C15	2.126 (3)	Fe2-C4	2.135 (2)
Fe1-C16	2.136 (3)	Fe2-C5	2.126 (2)
Fe1-C17	2.123 (2)	Fe2-S1	2.2659 (7)
Fe1-S1	2.2721 (7)	Fe2-S2	2.2723 (7)
Fe1-S2	2.2765 (7)	Fe2-S3	2.2545 (7)
Fe1-S3	2.2522 (7)	Fe1-Fe2	2.7842 (5)
Fe2-C1	2.109 (2)		

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The author is grateful for funding support (20060418) from Tianjin University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2242).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, Y.-H., Zhou, Y.-H., Chen, P.-P., Tao, Y.-S., Li, Y. & Qu, J.-P. (2008a). J. Am. Chem. Soc. 130, 15250–15251.

Chen, Y.-H., Zhou, Y.-H. & Qu, J.-P. (2008b). Organometallics, 27, 666-671.

Madec, P., Muir, K. W., Pétillon, F. Y., Rumin, R., Scaon, Y., Schollhammer, P. & Talarmin, J. (1999). J. Chem. Soc. Dalton Trans. pp. 2371–2383.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Acta Cryst. (2009). E65, m1542 [doi:10.1107/S1600536809045735]

Tri- μ -ethanethiolato-bis{[η^5 -1,2,3,4-tetramethyl-5-(trimethylsilyl)cyclopentadienyl]iron(II,III)}(Fe^{II} - Fe^{III})

J. Li

Comment

As shown in Fig. 1, the title compound is a dimeric complex, in which each Fe atom is coordinated by a 1,2,3,4-tetramethyl-5-(trimethylsilyl)cyclopentadienyl (Cp') ligand and three ethanethiolate ligands. The C₅ planes of the two Cp' ligands are perpendicular to the Fe—Fe vector, with angles of 1.89 (7) and 1.45 (7)° between the normals of the planes and the vector. Three thiolate ligands bridge two Fe atoms (Table 1). The plane of the three S atoms is approximately parallel to the Cp' planes with dihedral angles of 1.77 (8) and 1.55 (8)°, respectively, and bisects the Fe—Fe bond. There are no significant differences in the coordination geometries between the two Fe centers. The short Fe—Fe distance of 2.7842 (5) Å is clear evidence of intermetallic bond.

Experimental

To a stirred suspension of Cp'Li (1.28 g, 6.38 mmol) in 50 ml THF was added anhydrous FeCl₂ (0.81 g, 6.38 mmol) at 0°C, followed by stirring for 1 h. The resultant olive-green [Cp'FeCl]₂ solution was cooled to -78°C. Then, a suspension of LiSEt in THF, which was prepared by reaction of *n*-BuLi (2.20 ml, 2.9 *M* solution in *n*-hexane) and HSEt (0.48 ml, 6.38 mmol) at 0°C, was transferred *via* a cannula to the cooled solution of [Cp'FeCl]₂. The mixture was placed in a -78°C bath for 1 h and stirred overnight as it warmed to ambient temperature. The resulting red-violet solution was evaporated to dryness, and the residue was purified by column chromatography on neutral alumina with *n*-hexane as the eluent to give complex [Cp'Fe(μ -SEt)₃FeCp'] (yield 0.42 g, 19%) as violet microcrystalline solid. The crystals of the title complex suitable for X-ray analysis were obtained from a benzene solution layered with acetonitrile.

Refinement

H atoms were visible in difference Fourier maps and were subsequently treated as riding atoms, with C—H = 0.96 (CH₃) and 0.97 (CH₂) Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level.

Fig. 2. Packing diagram viewed along the *a* axis.

$\label{eq:tri-p-ethanethiolato-bis} Tri-\mu-ethanethiolato-bis \{ [\eta^5-1,2,3,4-tetramethyl-5- (trimethylsilyl) cyclopentadienyl] iron (II,III) \} (Fe^{II}-Fe^{III}) = Fe^{III} (Fe^{III}-Fe$

 $F_{000} = 2920$

 $\theta = 2.3-25.3^{\circ}$ $\mu = 1.06 \text{ mm}^{-1}$ T = 293 KPrism, violet-red $0.55 \times 0.43 \times 0.21 \text{ mm}$

 $D_{\rm x} = 1.253 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6361 reflections

Data collection

Bruker SMART APEX CCD diffractometer	6541 independent reflections
Radiation source: fine-focus sealed tube	4961 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.055$
T = 293 K	$\theta_{max} = 25.3^{\circ}$
φ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -21 \rightarrow 21$
$T_{\min} = 0.593, T_{\max} = 0.808$	$k = -23 \rightarrow 23$
43018 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.095$	$w = 1/[\sigma^2(F_o^2) + (0.0482P)^2 + 2.1955P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
6541 reflections	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
334 parameters	$\Delta \rho_{min} = -0.25 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Fe1	0.736349 (19)	0.186763 (16)	0.096497 (15)	0.03463 (10)
Fe2	0.728449 (18)	0.184706 (16)	0.232172 (15)	0.03427 (10)
S1	0.82127 (3)	0.22827 (3)	0.16907 (3)	0.04064 (15)
S2	0.74171 (4)	0.09562 (3)	0.16363 (3)	0.04026 (15)
S3	0.63846 (3)	0.21575 (3)	0.16057 (3)	0.03643 (14)
Sil	0.60803 (5)	0.08543 (4)	0.00400 (4)	0.0579 (2)
Si2	0.60737 (5)	0.06522 (4)	0.31233 (4)	0.0592 (2)
C1	0.67711 (15)	0.13606 (13)	0.31210 (11)	0.0447 (6)
C2	0.75840 (15)	0.13379 (14)	0.31891 (12)	0.0473 (6)
C3	0.78633 (16)	0.20045 (16)	0.32168 (12)	0.0523 (7)
C4	0.72446 (16)	0.24564 (14)	0.31789 (12)	0.0493 (6)
C5	0.65749 (15)	0.20626 (13)	0.31313 (11)	0.0457 (6)
C6	0.6515 (3)	-0.01943 (17)	0.3035 (2)	0.0983 (13)
H6A	0.6130	-0.0533	0.3040	0.147*
H6B	0.6857	-0.0270	0.3391	0.147*
H6C	0.6786	-0.0215	0.2630	0.147*
C7	0.5588 (2)	0.0664 (2)	0.39283 (18)	0.0925 (12)
H7A	0.5226	0.0306	0.3946	0.139*
H7B	0.5336	0.1087	0.3985	0.139*
H7C	0.5952	0.0605	0.4270	0.139*
C8	0.5375 (2)	0.0728 (2)	0.24510 (19)	0.0990 (13)
H8A	0.5030	0.0356	0.2470	0.149*
H8B	0.5633	0.0724	0.2039	0.149*
H8C	0.5102	0.1142	0.2497	0.149*
С9	0.8061 (2)	0.07234 (18)	0.33032 (15)	0.0738 (10)
H9A	0.8083	0.0629	0.3762	0.111*
H9B	0.8562	0.0803	0.3142	0.111*
Н9С	0.7845	0.0346	0.3078	0.111*
C10	0.86772 (19)	0.2199 (2)	0.33088 (15)	0.0799 (11)
H10A	0.8786	0.2235	0.3766	0.120*
H10B	0.8769	0.2625	0.3102	0.120*
H10C	0.8995	0.1862	0.3117	0.120*
C11	0.7284 (2)	0.32007 (16)	0.33017 (15)	0.0752 (11)
H11A	0.7251	0.3285	0.3762	0.113*
H11B	0.6873	0.3420	0.3083	0.113*
H11C	0.7753	0.3373	0.3138	0.113*
C12	0.57926 (17)	0.23407 (16)	0.31318 (14)	0.0616 (8)
H12A	0.5617	0.2381	0.3573	0.092*
H12B	0.5466	0.2044	0.2894	0.092*
H12C	0.5792	0.2776	0.2929	0.092*
C13	0.68795 (15)	0.14699 (12)	0.01108 (11)	0.0445 (6)
C14	0.76750 (16)	0.13311 (15)	0.01178 (12)	0.0513 (7)
C15	0.80807 (16)	0.19429 (16)	0.01372 (12)	0.0558 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C16	0.75472 (18)	0.24840 (15)	0.01263 (12)	0.0540 (7)
C17	0.68159 (16)	0.21948 (13)	0.01000 (11)	0.0472 (6)
C18	0.6325 (3)	0.00125 (19)	0.0373 (2)	0.1132 (17)
H18A	0.6769	-0.0153	0.0159	0.170*
H18B	0.5915	-0.0293	0.0297	0.170*
H18C	0.6417	0.0048	0.0833	0.170*
C19	0.5210 (2)	0.1144 (2)	0.0469 (2)	0.1054 (15)
H19A	0.4820	0.0813	0.0418	0.158*
H19B	0.5046	0.1563	0.0285	0.158*
H19C	0.5317	0.1205	0.0925	0.158*
C20	0.58613 (19)	0.07463 (16)	-0.08434 (14)	0.0691 (9)
H20A	0.6303	0.0592	-0.1068	0.104*
H20B	0.5704	0.1169	-0.1024	0.104*
H20C	0.5464	0.0422	-0.0893	0.104*
C21	0.8032 (2)	0.06465 (18)	0.00316 (16)	0.0859 (11)
H21A	0.8098	0.0556	-0.0425	0.129*
H21B	0.7711	0.0309	0.0220	0.129*
H21C	0.8513	0.0639	0.0245	0.129*
C22	0.89283 (18)	0.2019 (2)	0.01279 (16)	0.0888 (12)
H22A	0.9101	0.2038	-0.0316	0.133*
H22B	0.9155	0.1641	0.0344	0.133*
H22C	0.9067	0.2426	0.0350	0.133*
C23	0.7726 (2)	0.32161 (17)	0.00420 (16)	0.0849 (12)
H23A	0.7774	0.3317	-0.0414	0.127*
H23B	0.8191	0.3318	0.0260	0.127*
H23C	0.7328	0.3482	0.0226	0.127*
C24	0.61042 (19)	0.25890 (17)	0.00099 (15)	0.0740 (9)
H24A	0.6011	0.2652	-0.0448	0.111*
H24B	0.6154	0.3019	0.0218	0.111*
H24C	0.5691	0.2348	0.0202	0.111*
C25	0.82319 (17)	0.32059 (13)	0.17175 (14)	0.0532 (7)
H25A	0.7906	0.3383	0.1379	0.064*
H25B	0.8039	0.3358	0.2135	0.064*
C26	0.90144 (19)	0.34718 (17)	0.16224 (19)	0.0828 (11)
H26A	0.9006	0.3954	0.1639	0.124*
H26B	0.9203	0.3328	0.1206	0.124*
H26C	0.9336	0.3303	0.1962	0.124*
C27	0.83986 (17)	0.06546 (14)	0.16658 (14)	0.0586 (7)
H27A	0.8670	0.0821	0.1288	0.070*
H27B	0.8643	0.0831	0.2053	0.070*
C28	0.8435 (2)	-0.01107 (17)	0.1676 (2)	0.0931 (13)
H28A	0.8953	-0.0252	0.1692	0.140*
H28B	0.8202	-0.0286	0.1290	0.140*
H28C	0.8175	-0.0276	0.2054	0.140*
C29	0.62541 (15)	0.30762 (12)	0.16122 (13)	0.0470 (6)
H29A	0.6473	0.3261	0.2007	0.056*
H29B	0.6515	0.3272	0.1242	0.056*
C30	0.54183 (17)	0.32631 (15)	0.15798 (17)	0.0676 (9)
H30A	0.5367	0.3744	0.1584	0.101*

H30B	0.5161	0.3076	0.1950	0.101*
H30C	0.5203	0.3086	0.1186	0.101*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0387 (2)	0.03572 (19)	0.02946 (18)	-0.00254 (14)	0.00126 (13)	-0.00052 (13)
Fe2	0.0365 (2)	0.03658 (19)	0.02974 (18)	-0.00070 (14)	-0.00060 (13)	-0.00037 (13)
S1	0.0380 (3)	0.0448 (3)	0.0391 (3)	-0.0054 (3)	0.0007 (3)	-0.0013 (2)
S2	0.0494 (4)	0.0343 (3)	0.0371 (3)	0.0012 (3)	-0.0001 (3)	-0.0009 (2)
S 3	0.0367 (3)	0.0374 (3)	0.0351 (3)	0.0004 (2)	-0.0010 (2)	0.0004 (2)
Si1	0.0693 (5)	0.0598 (5)	0.0447 (4)	-0.0209 (4)	-0.0060 (4)	-0.0041 (3)
Si2	0.0644 (5)	0.0614 (5)	0.0518 (5)	-0.0157 (4)	0.0047 (4)	0.0094 (4)
C1	0.0519 (16)	0.0523 (15)	0.0298 (12)	-0.0016 (12)	0.0021 (11)	0.0045 (10)
C2	0.0490 (15)	0.0613 (17)	0.0315 (12)	0.0037 (13)	-0.0039 (11)	0.0073 (11)
C3	0.0518 (16)	0.0732 (19)	0.0318 (13)	-0.0079 (15)	-0.0071 (11)	-0.0038 (12)
C4	0.0638 (18)	0.0518 (15)	0.0323 (12)	-0.0061 (14)	0.0031 (12)	-0.0078 (11)
C5	0.0519 (16)	0.0539 (15)	0.0313 (12)	0.0043 (13)	0.0066 (11)	-0.0011 (11)
C6	0.132 (4)	0.057 (2)	0.106 (3)	-0.017 (2)	0.020 (3)	-0.0030 (19)
C7	0.100 (3)	0.099 (3)	0.078 (2)	-0.024 (2)	0.031 (2)	0.015 (2)
C8	0.087 (3)	0.117 (3)	0.093 (3)	-0.050 (2)	-0.022 (2)	0.021 (2)
C9	0.076 (2)	0.087 (2)	0.0587 (19)	0.0257 (19)	-0.0049 (16)	0.0209 (16)
C10	0.058 (2)	0.128 (3)	0.0535 (18)	-0.026 (2)	-0.0131 (15)	-0.0047 (19)
C11	0.113 (3)	0.0591 (19)	0.0535 (19)	-0.0160 (18)	0.0105 (17)	-0.0199 (14)
C12	0.0612 (18)	0.0756 (19)	0.0480 (15)	0.0186 (16)	0.0116 (14)	-0.0002 (14)
C13	0.0559 (16)	0.0465 (14)	0.0312 (12)	-0.0038 (12)	-0.0022 (11)	-0.0059 (10)
C14	0.0590 (18)	0.0614 (17)	0.0336 (13)	0.0050 (14)	0.0056 (12)	-0.0072 (12)
C15	0.0519 (17)	0.083 (2)	0.0326 (13)	-0.0102 (15)	0.0078 (12)	-0.0002 (13)
C16	0.077 (2)	0.0521 (16)	0.0330 (13)	-0.0184 (15)	0.0013 (13)	0.0045 (12)
C17	0.0601 (17)	0.0506 (14)	0.0307 (12)	-0.0005 (13)	-0.0033 (11)	0.0040 (11)
C18	0.152 (4)	0.072 (2)	0.116 (3)	-0.049 (3)	-0.061 (3)	0.032 (2)
C19	0.080 (3)	0.135 (4)	0.101 (3)	-0.051 (3)	0.024 (2)	-0.045 (3)
C20	0.083 (2)	0.069 (2)	0.0545 (17)	-0.0225 (17)	-0.0116 (16)	-0.0048 (14)
C21	0.109 (3)	0.088 (2)	0.061 (2)	0.038 (2)	0.0071 (19)	-0.0238 (18)
C22	0.055 (2)	0.154 (4)	0.0571 (19)	-0.022 (2)	0.0145 (16)	0.000 (2)
C23	0.137 (4)	0.066 (2)	0.0508 (19)	-0.037 (2)	0.0057 (19)	0.0144 (15)
C24	0.088 (2)	0.078 (2)	0.0553 (18)	0.0249 (19)	-0.0211 (17)	0.0074 (15)
C25	0.0558 (17)	0.0467 (14)	0.0571 (17)	-0.0115 (13)	0.0026 (13)	-0.0053 (12)
C26	0.059 (2)	0.061 (2)	0.128 (3)	-0.0248 (17)	-0.0004 (19)	0.0077 (19)
C27	0.0600 (18)	0.0551 (16)	0.0606 (18)	0.0218 (14)	0.0013 (14)	-0.0018 (13)
C28	0.106 (3)	0.057 (2)	0.116 (3)	0.035 (2)	0.000 (2)	-0.0008 (19)
C29	0.0433 (14)	0.0387 (13)	0.0589 (16)	0.0031 (11)	-0.0022 (12)	-0.0003 (11)
C30	0.0507 (18)	0.0540 (17)	0.098 (3)	0.0115 (14)	-0.0022 (16)	0.0028 (16)

Geometric parameters (Å, °)

Fe1—C13	2.104 (2)	C11—H11B	0.9600
Fe1—C14	2.111 (2)	C11—H11C	0.9600
Fe1—C15	2.126 (3)	C12—H12A	0.9600

Fe1—C16	2.136 (3)	C12—H12B	0.9600
Fe1—C17	2.123 (2)	C12—H12C	0.9600
Fe1—S1	2.2721 (7)	C13—C14	1.438 (4)
Fe1—S2	2.2765 (7)	C13—C17	1.445 (4)
Fe1—S3	2.2522 (7)	C14—C15	1.414 (4)
Fe2—C1	2.109 (2)	C14—C21	1.511 (4)
Fe2—C2	2.113 (2)	C15—C16	1.433 (4)
Fe2—C3	2.125 (2)	C15—C22	1.512 (4)
Fe2—C4	2.135 (2)	C16—C17	1.420 (4)
Fe2—C5	2.126 (2)	C16—C23	1.499 (4)
Fe2—S1	2.2659 (7)	C17—C24	1.497 (4)
Fe2—S2	2.2723 (7)	C18—H18A	0.9600
Fe2—S3	2.2545 (7)	C18—H18B	0.9600
Fe1—Fe2	2.7842 (5)	C18—H18C	0.9600
S1—C25	1.836 (3)	С19—Н19А	0.9600
S2—C27	1.843 (3)	С19—Н19В	0.9600
S3—C29	1.841 (2)	С19—Н19С	0.9600
Si1—C18	1.858 (4)	C20—H20A	0.9600
Si1—C20	1.864 (3)	C20—H20B	0.9600
Si1—C19	1.867 (4)	С20—Н20С	0.9600
Si1—C13	1.878 (3)	C21—H21A	0.9600
Si2—C8	1.859 (4)	C21—H21B	0.9600
Si2—C7	1.861 (3)	C21—H21C	0.9600
Si2—C6	1.865 (4)	C22—H22A	0.9600
Si2—C1	1.874 (3)	C22—H22B	0.9600
C1—C5	1.438 (4)	C22—H22C	0.9600
C1—C2	1.450 (4)	С23—Н23А	0.9600
C2—C3	1.416 (4)	С23—Н23В	0.9600
С2—С9	1.505 (4)	С23—Н23С	0.9600
C3—C4	1.421 (4)	C24—H24A	0.9600
C3—C10	1.507 (4)	C24—H24B	0.9600
C4—C5	1.426 (4)	C24—H24C	0.9600
C4—C11	1.502 (4)	C25—C26	1.498 (4)
C5—C12	1.494 (4)	C25—H25A	0.9700
С6—Н6А	0.9600	С25—Н25В	0.9700
С6—Н6В	0.9600	C26—H26A	0.9600
С6—Н6С	0.9600	C26—H26B	0.9600
С7—Н7А	0.9600	C26—H26C	0.9600
С7—Н7В	0.9600	C27—C28	1.522 (4)
С7—Н7С	0.9600	С27—Н27А	0.9700
С8—Н8А	0.9600	С27—Н27В	0.9700
C8—H8B	0.9600	C28—H28A	0.9600
C8—H8C	0.9600	C28—H28B	0.9600
С9—Н9А	0.9600	C28—H28C	0.9600
С9—Н9В	0.9600	C29—C30	1.530 (4)
С9—Н9С	0.9600	С29—Н29А	0.9700
C10—H10A	0.9600	С29—Н29В	0.9700
С10—Н10В	0.9600	С30—Н30А	0.9600
C10—H10C	0.9600	С30—Н30В	0.9600

C11—H11A	0.9600	С30—Н30С	0.9600
C13—Fe1—C14	39.90 (10)	H8A—C8—H8B	109.5
C13—Fe1—C17	39.98 (10)	Si2—C8—H8C	109.5
C14—Fe1—C17	65.67 (10)	H8A—C8—H8C	109.5
C13—Fe1—C15	66.85 (10)	H8B—C8—H8C	109.5
C14—Fe1—C15	38.98 (11)	С2—С9—Н9А	109.5
C17—Fe1—C15	65.56 (11)	С2—С9—Н9В	109.5
C13—Fe1—C16	66.94 (10)	Н9А—С9—Н9В	109.5
C14—Fe1—C16	65.66 (11)	С2—С9—Н9С	109.5
C17—Fe1—C16	38.96 (10)	Н9А—С9—Н9С	109.5
C15—Fe1—C16	39.29 (12)	Н9В—С9—Н9С	109.5
C13—Fe1—S3	105.45 (7)	C3—C10—H10A	109.5
C14—Fe1—S3	144.15 (8)	C3—C10—H10B	109.5
C17—Fe1—S3	93.18 (8)	H10A—C10—H10B	109.5
C15—Fe1—S3	155.34 (9)	C3—C10—H10C	109.5
C16—Fe1—S3	116.12 (9)	H10A—C10—H10C	109.5
C13—Fe1—S1	162.12 (7)	H10B-C10-H10C	109.5
C14—Fe1—S1	123.23 (8)	C4—C11—H11A	109.5
C17—Fe1—S1	137.62 (7)	C4—C11—H11B	109.5
C15—Fe1—S1	95.73 (8)	H11A—C11—H11B	109.5
C16—Fe1—S1	102.55 (8)	C4—C11—H11C	109.5
S3—Fe1—S1	92.12 (3)	H11A—C11—H11C	109.5
C13—Fe1—S2	102.76 (7)	H11B—C11—H11C	109.5
C14—Fe1—S2	94.83 (8)	C5-C12-H12A	109.5
C17—Fe1—S2	140.11 (7)	С5—С12—Н12В	109.5
C15—Fe1—S2	120.88 (9)	H12A—C12—H12B	109.5
C16—Fe1—S2	159.45 (9)	C5—C12—H12C	109.5
S3—Fe1—S2	83.31 (2)	H12A—C12—H12C	109.5
S1—Fe1—S2	82.28 (2)	H12B-C12-H12C	109.5
C13—Fe1—Fe2	143.59 (7)	C14—C13—C17	105.5 (2)
C14—Fe1—Fe2	145.80 (8)	C14—C13—Si1	128.1 (2)
C17—Fe1—Fe2	144.60 (7)	C17—C13—Si1	126.1 (2)
C15—Fe1—Fe2	145.90 (8)	C14—C13—Fe1	70.31 (14)
C16—Fe1—Fe2	145.06 (8)	C17—C13—Fe1	70.73 (13)
S3—Fe1—Fe2	51.882 (17)	Si1—C13—Fe1	128.11 (13)
S1—Fe1—Fe2	52.053 (18)	C15—C14—C13	109.6 (2)
S2—Fe1—Fe2	52.191 (17)	C15—C14—C21	124.4 (3)
C1—Fe2—C2	40.17 (10)	C13—C14—C21	125.6 (3)
C1—Fe2—C3	66.79 (11)	C15-C14-Fe1	71.08 (15)
C2—Fe2—C3	39.02 (11)	C13—C14—Fe1	69.78 (13)
C1—Fe2—C5	39.70 (10)	C21-C14-Fe1	131.4 (2)
C2—Fe2—C5	65.74 (10)	C14—C15—C16	108.0 (2)
C3—Fe2—C5	65.35 (11)	C14—C15—C22	126.3 (3)
C1—Fe2—C4	66.83 (10)	C16—C15—C22	125.6 (3)
C2—Fe2—C4	65.66 (11)	C14—C15—Fe1	69.94 (14)
C3—Fe2—C4	38.95 (11)	C16—C15—Fe1	70.72 (15)
C5—Fe2—C4	39.10 (10)	C22—C15—Fe1	127.8 (2)
C1—Fe2—S3	108.97 (7)	C17—C16—C15	107.5 (2)
C2—Fe2—S3	148.93 (8)	C17—C16—C23	125.6 (3)

C3—Fe2—S3	149.72 (9)	C15—C16—C23	126.2 (3)
C5—Fe2—S3	91.91 (7)	C17—C16—Fe1	70.06 (14)
C4—Fe2—S3	110.91 (8)	C15-C16-Fe1	69.99 (15)
C1—Fe2—S1	158.81 (7)	C23—C16—Fe1	133.0 (2)
C2—Fe2—S1	118.70 (8)	C16—C17—C13	109.4 (2)
C3—Fe2—S1	94.88 (8)	C16—C17—C24	124.3 (3)
C5—Fe2—S1	143.01 (8)	C13—C17—C24	126.1 (3)
C4—Fe2—S1	106.08 (8)	C16—C17—Fe1	70.99 (15)
S3—Fe2—S1	92.22 (3)	C13—C17—Fe1	69.28 (13)
C1—Fe2—S2	99.65 (7)	C24—C17—Fe1	130.47 (19)
C2—Fe2—S2	96.94 (8)	Si1—C18—H18A	109.5
C3—Fe2—S2	126.74 (9)	Si1—C18—H18B	109.5
C5—Fe2—S2	134.48 (8)	H18A—C18—H18B	109.5
C4—Fe2—S2	162.58 (8)	Si1—C18—H18C	109.5
S3—Fe2—S2	83.35 (2)	H18A—C18—H18C	109.5
S1—Fe2—S2	82.51 (2)	H18B—C18—H18C	109.5
C1—Fe2—Fe1	143.52 (7)	Si1—C19—H19A	109.5
C2—Fe2—Fe1	146.54 (8)	Si1—C19—H19B	109.5
C3—Fe2—Fe1	146.66 (8)	H19A—C19—H19B	109.5
C5—Fe2—Fe1	143.71 (7)	Si1—C19—H19C	109.5
C4—Fe2—Fe1	144.59 (8)	H19A—C19—H19C	109.5
S3—Fe2—Fe1	51.807 (18)	H19B—C19—H19C	109.5
S1—Fe2—Fe1	52.256 (17)	Si1—C20—H20A	109.5
S2—Fe2—Fe1	52.330 (18)	Si1—C20—H20B	109.5
C25—S1—Fe2	112.23 (9)	H20A—C20—H20B	109.5
C25—S1—Fe1	113.25 (10)	Si1—C20—H20C	109.5
Fe2—S1—Fe1	75.69 (2)	H20A—C20—H20C	109.5
C27—S2—Fe2	109.33 (10)	H20B-C20-H20C	109.5
C27—S2—Fe1	108.55 (10)	C14—C21—H21A	109.5
Fe2—S2—Fe1	75.48 (2)	C14—C21—H21B	109.5
C29—S3—Fe1	110.79 (9)	H21A—C21—H21B	109.5
C29—S3—Fe2	110.84 (9)	C14—C21—H21C	109.5
Fe1—S3—Fe2	76.31 (2)	H21A—C21—H21C	109.5
C18—Si1—C20	107.53 (17)	H21B—C21—H21C	109.5
C18—Si1—C19	107.3 (2)	C15—C22—H22A	109.5
C20—Si1—C19	108.69 (18)	C15—C22—H22B	109.5
C18—Si1—C13	112.45 (16)	H22A—C22—H22B	109.5
C20—Si1—C13	107.90 (12)	C15—C22—H22C	109.5
C19—Si1—C13	112.76 (14)	H22A—C22—H22C	109.5
C8—Si2—C7	110.3 (2)	H22B—C22—H22C	109.5
C8—Si2—C6	106.3 (2)	C16—C23—H23A	109.5
C7—Si2—C6	106.96 (18)	С16—С23—Н23В	109.5
C8—Si2—C1	112.19 (14)	H23A—C23—H23B	109.5
C7—Si2—C1	107.36 (15)	C16—C23—H23C	109.5
C6—Si2—C1	113.59 (16)	H23A—C23—H23C	109.5
C5—C1—C2	105.6 (2)	H23B—C23—H23C	109.5
C5—C1—Si2	124.7 (2)	C17—C24—H24A	109.5
C2—C1—Si2	129.3 (2)	C17—C24—H24B	109.5
C5—C1—Fe2	70.80 (14)	H24A—C24—H24B	109.5

$C_2 = C_1 = E_2^2$	70.08(14)	C17 C24 H24C	100.5
$C_2 = C_1 = Fe_2$	120 16 (12)	$C1/-C24\Pi24C$	109.5
S_{12} C_{1} C_{2} C_{1}	129.10 (13)	$H_24A - C_24 - H_24C$	109.5
$C_3 = C_2 = C_1$	108.8(2) 122.8(2)	$\Pi_{24B} = C_{24} = \Pi_{24C}$	109.3
$C_{3} = C_{2} = C_{9}$	123.8 (3)	C_{20} C_{25} S_{1}	111.5 (2)
C1 = C2 = C9	126.9 (3)	C26—C25—H25A	109.3
C3-C2-Fe2	/0.95 (15)	SI-C25-H25A	109.3
CI-C2-Fe2	69.75 (13)	C26—C25—H25B	109.3
C9—C2—Fe2	131.4 (2)	S1—C25—H25B	109.3
C2—C3—C4	108.6 (2)	H25A—C25—H25B	108.0
C2—C3—C10	125.5 (3)	C25—C26—H26A	109.5
C4—C3—C10	125.8 (3)	C25—C26—H26B	109.5
C2—C3—Fe2	70.03 (14)	H26A—C26—H26B	109.5
C4—C3—Fe2	70.88 (14)	C25—C26—H26C	109.5
C10—C3—Fe2	127.51 (19)	H26A—C26—H26C	109.5
C3—C4—C5	107.5 (2)	H26B—C26—H26C	109.5
C3—C4—C11	125.3 (3)	C28—C27—S2	111.5 (3)
C5—C4—C11	126.2 (3)	C28—C27—H27A	109.3
C3—C4—Fe2	70.16 (14)	S2—C27—H27A	109.3
C5—C4—Fe2	70.12 (14)	С28—С27—Н27В	109.3
C11—C4—Fe2	134.0 (2)	S2—C27—H27B	109.3
C4—C5—C1	109.4 (2)	H27A—C27—H27B	108.0
C4—C5—C12	124.8 (3)	C27—C28—H28A	109.5
C1—C5—C12	125.7 (3)	C27—C28—H28B	109.5
C4—C5—Fe2	70.77 (14)	H28A—C28—H28B	109.5
C1—C5—Fe2	69.50 (13)	C27—C28—H28C	109.5
C12—C5—Fe2	128.69 (18)	H28A—C28—H28C	109.5
Si2—C6—H6A	109.5	H28B—C28—H28C	109.5
Si2—C6—H6B	109.5	C30—C29—S3	111.25 (19)
Н6А—С6—Н6В	109.5	C30—C29—H29A	109.4
Si2—C6—H6C	109.5	S3—C29—H29A	109.4
Н6А—С6—Н6С	109.5	C30—C29—H29B	109.4
H6B—C6—H6C	109.5	S3—C29—H29B	109.4
Si2—C7—H7A	109.5	H29A—C29—H29B	108.0
Si2—C7—H7B	109.5	C29—C30—H30A	109.5
Н7А—С7—Н7В	109.5	C29—C30—H30B	109.5
Si2—C7—H7C	109.5	H30A—C30—H30B	109.5
Н7А—С7—Н7С	109.5	С29—С30—Н30С	109.5
H7B—C7—H7C	109.5	H30A—C30—H30C	109.5
Si2—C8—H8A	109.5	H30B—C30—H30C	109.5
Si2—C8—H8B	109.5		

Fig. 1

